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A Objective Development, validation, and field demonstrationaof
DER Management System (DERMS) with advanced sensor data
and a novel adaptive control algorithm to enhance visibility and
controllability of DERs in power distributisgistem.

A Components

A Platform Development A Hardwarein-the-Loop Testing
A Algorithm Development A Pilot Demonstration in Riverside, CA
A Monitoring and Control

A Cost Benefit Analysis and Commercialization Plan Development

This presentation may have proprietary information and is protected from public release.
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A Advanced Monitoringbased on Heterogeneous MeasuremenfBhe monitoring
algorithms in this project utilize a heterogeneous selegfacyandadvanced
sensordata,ranging from behindhe-meter DER sensorispth PVs and batteries,
distribution-level PMUs, substation SCADA systems, and line current sensors, wit
their limited availability in order to infer practical network conditions that
otherwise would have to be computed from an often inaccuraiadels.

A AdvancedModel-Free, Layered, and Clustered DER Conffble DER control
algorithmsuse theconcept ofExtremum Seekin@:S), which ismodelfree
probingbased control method. To the best of our knowledge, Wsthe first
time ES method is being tested on major realrld inverters; bothndividually
and in acluster The algorithm has been customized for the needs in this project.

It wasshown that even legacy equipmefwhenpaired with a few additional
advanced equipment) can support such advanced control.

This presentation may have proprietary information and is protected from public release.
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A FlexibleTechnology Thesolutionthat is developed and demonstrated in this
LIN2 2SO0 A& Y2Rdz I NJ | y FDERMS$SAgmasatighTit | vy R
will be transformational to utilitiesncludingthe smaller municipaltilities, which
may not have the resources to deploy advanced distribution system and DERMS
solutions in order to support high penetration of solar power integration

¢KAa FTESEAOGES 59waf{ FTNIYSg2N] GKI G N
ANM framework, camost arange of algorithms that are develop®ea different
platforms(e.g., MATLAB and Python) and interact wiiffierent hardware devices
(e.g., different PV and battery invertersgw and old, different types of sensors).

Utilities cancustomizetheir solution based on themeedsand budget.

This presentation may have proprietary information and is protected from public release.
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A Purpose of HITestingprovidea laboratory environment that
will test the response of physical hardware, communication
system, and overall performance of the DER management sys

T

Communicationsvas done using DNP3 over TCP/IP

T

ANM Strata operated across several IT components
Beaglebones Black used to emulate 3 ANM Elements

A Circuitemulation was done usiniipe CYMEnodelsof the RPU
Power Distribution Feedes224 andl225

CYME model was developby convertingSynergmodel

Architecture

A Hardware:
ANM Elements
Eight PV inverters
S&C 5801 Switch Controller
IntelliCARCapacitor Bank
Two PSL Micr®MUs
Sentient Line Current Sensor
Raspberry Pl to emulate switch, capacitor, breaker controlle cyve workstation
Total Physical Nodéount:105.

Switch Controller
Recloser Controller

Smart Inverter
Micro-PMU

Hardware

ANM Element Internals

This presentation may have proprietary information and is protected from public release.



HIL Testing Scaling

Funded by:

U SOLAR ENERGY
p TECHNOLOGIES OFFICE

U.S. Department Of Energy

Scaling up to 10,000 nodes:
A It wasachieved by expanding the existing setup to
1000 Nodes and then multiplying the setuptirfies.

Expansion/scalingias achieved usingrtual nodes

Avirtual node is either aensorpoint or acontrol point.
A A PV virtual inverter is botbenor and control points

2 Virtual Nodes per Inverter

ohohaiake

Control Command

Within the base circuit model there are 55 loads
A Each load was given either 5 or 10 virtual PV invertg
elements (basedn size) to achieve 1008odes

uuuuuuuuuu

ScalingAMN Strata required scripting and automation to
streamline the manual process
A Docker was used to create 1000 DNP channels
A Mappingof the application points was
automatedusing C#scripts.

This presentation may have proprietary information and is protected from public release.
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A Selected useasesvere tested on HIL testing platform:

Volt/VAR Control:
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Distribution System State Estimation:

A Heterogeneous measurements are used: MiBtdUs, line
sensors, SCADA, psedai@asurements, etc.

A Different Scenarias

A load level PVgeneration, capacitobankswitching.

Topology Reconfiguration:

A9l OK &aO0OSYl NA2

The platform, communications, and all applicatioas successfully.

This presentation may have proprietary information and is protected from public release.

A Differvent Scenariosiarying PWveather and load profiles

GF 184 |2 dzy |

A Binary output files showed the results
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Field Demonstration
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A Three Substations and 10 Feeders
A All applications were tested on Feeder 1224.
A At least one application is tested on every other Feeder.

This presentation may have proprietary information and is protected from public release.
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Distribution System State Estimation (DSSE)

A Utilizing Heterogeneous Measuremen8CADA, Mickl®MUSs, Switches
Status, Sentient Line Current Sensors (nontact), DER Inverter Sensors

|

- First Time Such Application
- Challenging Formulation

w

- Compensate for Missing Data
- Impact of Load Transformer Turn Ratic

(/ (Regression Model)

Voltage Difference (V)

| 1 1 | J
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PV Inverter Current (A)
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Distribution System State Estimation (DSSE)

A Utilizing Heterogeneous Measurements: SCADA, Midnds, Switches
Status, Sentient Line Current Sensors (oontact), DER Inverter Sensors.
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Distribution System State Estimation (DSSE)

A Accuracy of Utility Models and Sensitivity Analysis:

] Average of Error in DSSE B
Weekday Soal-
Month  E\INsEL Day Night Weekend
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Feeder Loading (MVA)

Utility Models Better Fit
High Loading Conditions e e w e w s

N

Early COVH29 Shut Down
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Phase Identification (PI)
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Phase Identification (PI)
A New Method based on Reliability Assessment.
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Resource Forecasting (RF)

A Different deep neural network models were examin&gcurrent Neural Network
(RNN), Long Shefierm Memory (LSTM), and Gated Recurrent Unit ({GRU

— \Worked best on various PV units.

A Challenge: Some PV units were installed recefithytéd historical datj

;P Proxy Method
y Accuracy (MRMSI
Historical Data
_OIdPV Unit ™ 17.67% 12.55%
RF 15.80% 11.04%

Historical Data | Models . : .

IStorical Da d_, Proxy Site: 2 Miles Away (Different Feeders)
- New PV Unit

This presentation may have proprietary information and is protected from public release.
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Resource Forecasting (RF)

A Different deep neural network models were examin&gcurrent Neural Network
(RNN), Long Shefierm Memory (LSTM), and Gated Recurrent Unit ({GRU

A Another Challenge: Unusual change in weather conditions (example: a
highly cloudy day after a series of mostly sunny days).

mmm) Use Satellite Data for Weather and Irradiance Forec@s®| fromsolcasj

- GlobalHorizontal Irradiance

- CloudLevel Without AP 97.6%
With API 100%
- Temperature

PV Site: Building 1200 (averaggMSE= 12.47%)
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A Voltage management accomplished througktremum Seekin¢eS) Control

A Advantages
Modelfree, inputoutput based approach
Very communication light
Scalable distributed optimal control
Minimize any convex objective
Controllers can be objective agnostic

A The ES Control Process:
ESC resource perturbs its output (P and/or Q) with a sinusoidal signal
A central entity composes an objective off system measurements
Objective is broadcast to all ESC resources
DERs$ndependently identify their gradient on the objective and perform gradient descen

This presentation may have proprietary information and is protected from public release.



Voltage Control Approach
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A EachES Controlleincludes:
A highpass filter
Demodulation
Low-pass filter
An integrator
Addition of the probing sinusoid

A The ES Control Considerations:
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The speed of convergence is related to the frequency ofptlabing signal.

The neighborhood of the optimal objective is also influenced by both the probe
frequency and amplitude, as well as the integrator gain.

A In field testingthe inverter hardwareavailable for demonstration limited
probing frequency and forced management through purely real power.

This presentation may have proprietary information and is protected from public release.
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Demonstrations performed on 3 RMitsand 1 Battery trailer connected
to two RPU feeders (1222hd 1225) undemHuntersubstation.

Objectivewas to drive voltages measured at the inverterabthe
building towardsa targetvalue (the set point).

13tests performed from January tiuly.
4-6 hours long
Voltage targets between 284 and 290¥ L
11 tests on individual DER controlte8tson coordinated DER cluster control.
3 tests performed with battery system mimicking PV output

3 Tests are selected here to highlight voltage control results.

This presentation may have proprietary information and is protected from public release.
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A Test #3: January 9PV Inverter connected to Feeder 1224
Inverter Voltage Target: 290W\L

A ESC drives the system toward maximpower A As power increases, so does logaltage

A Curtailsto ensureprobingduring cloudy weather A Correspondinglythe value of the objective is driven
toward zero (i.e., the goal of the gradiedescent).

This presentation may have proprietary information and is protected from public release.



